1,944 research outputs found

    A comparison of methods for treatment selection in seamless phase II/III clinical trials incorporating information on short-term endpoints

    Get PDF
    In an adaptive seamless phase II/III clinical trial interim analysis data are used for treatment selection, enabling resources to be focussed on comparison of more effective treatment(s) with a control. In this paper we compare two methods recently proposed to enable use of short-term endpoint data for decision-making at the interim analysis. The comparison focusses on the power and the probability of correctly identifying the most promising treatment. We show that the choice of method depends on how well short-term data predict the best treatment, which may be measured by the correlation between treatment effects on short-term and long-term endpoints

    The Extended Shapes of Galactic Satellites

    Full text link
    We are exploring the extended stellar distributions of Galactic satellite galaxies and globular clusters. For seven objects studied thus far, the observed profile departs from a King function at large r, revealing a ``break population'' of stars. In our sample, the relative density of the ``break'' correlates to the inferred M/L of these objects. We discuss opposing hypotheses for this trend: (1) Higher M/L objects harbor more extended dark matter halos that support secondary, bound, stellar ``halos''. (2) The extended populations around dwarf spheroidals (and some clusters) consist of unbound, extratidal debris from their parent objects, which are undergoing various degrees of tidal disruption. In this scenario, higher M/L ratios reflect higher degrees of virial non-equilibrium in the parent objects, thus invalidating a precept underlying the use of core radial velocities to obtain masses.Comment: 8 pages, including 2 figures Yale Cosmology Workshop: The Shapes of Galaxies and Their Halo

    Proton Differential Elliptic Flow and the Isospin-Dependence of the Nuclear Equation of State

    Get PDF
    Within an isospin-dependent transport model for nuclear reactions involving neutron-rich nuclei, we study the first-order direct transverse flow of protons and their second-order differential elliptic flow as a function of transverse momentum. It is found that the differential elliptic flow of mid-rapidity protons, especially at high transverse momenta, is much more sensitive to the isospin dependence of the nuclear equation of state than the direct flow. Origins of these different sensitivities and their implications to the experimental determination of the isospin dependence of the nuclear equation of state by using neutron-rich heavy-ion collisions at intermediate energies are discussed.Comment: 15 pages, 6 figures. Phys. Rev. C (2001) in pres

    Neutron-Proton Differential Flow as a Probe of Isospin-Dependence of Nuclear Equation of State

    Get PDF
    The neutron-proton differential flow is shown to be a very useful probe of the isospin-dependence of the nuclear equation of state (EOS). This novel approach utilizes constructively both the isospin fractionation and the nuclear collective flow as well as their sensitivities to the isospin-dependence of the nuclear EOS. It also avoids effectively uncertainties associated with other dynamical ingredients of heavy-ion reactions at intermediate energies.Comment: 10 pages + 3 figures. Phys. Rev. Lett. (2000) in pres

    Neutrons from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 AMeV

    Full text link
    We measured neutron triple-differential cross sections from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 \AMeV. The reaction plane for each collision was estimated from the summed transverse velocity vector of the charged fragments emitted in the collision. We examined the azimuthal distribution of the triple-differential cross sections as a function of the polar angle and the neutron rapidity. We extracted the average in--plane transverse momentum Px\langle P_x\rangle and the normalized observable Px/P\langle P_x/P_\perp\rangle, where PP_\perp is the neutron transverse momentum, as a function of the neutron center-of-mass rapidity, and we examined the dependence of these observables on beam energy. These collective flow observables for neutrons, which are consistent with those of protons plus bound nucleons from the Plastic Ball Group, agree with the Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum--dependent interaction. Also, we calculated the polar-angle-integrated maximum azimuthal anisotropy ratio R from the value of Px/P\langle P_x/P_\perp\rangle.Comment: 20 LaTeX pages. 11 figures to be faxed on request, send email to sender's addres

    Differential flow in heavy-ion collisions at balance energies

    Full text link
    A strong differential transverse collective flow is predicted for the first time to occur in heavy-ion collisions at balance energies. We also give a novel explanation for the disappearance of the total transverse collective flow at the balance energies. It is further shown that the differential flow especially at high transverse momenta is a useful microscope capable of resolving the balance energy's dual sensitivity to both the nuclear equation of state and in-medium nucleon-nucleon cross sections in the reaction dynamics.Comment: Phys. Rev. Lett. (1999) in pres

    The importance of initial-final state correlations for the formation of fragments in heavy ion collisions

    Get PDF
    Using quantum molecular dynamics simulations, we investigate the formation of fragments in symmetric reactions between beam energies of E=30AMeV and 600AMeV. After a comparison with existing data we investigate some observables relevant to tackle equilibration: dsigma/dErat, the double differential cross section dsigma/pt.dpz.dpt,... Apart maybe from very energetic E>400AMeV and very central reactions, none of our simulations gives evidence that the system passes through a state of equilibrium. Later, we address the production mechanisms and find that, whatever the energy, nucleons finally entrained in a fragment exhibit strong initial-final state correlations, in coordinate as well as in momentum space. At high energy those correlations resemble the ones obtained in the participant-spectator model. At low energy the correlations are equally strong, but more complicated; they are a consequence of the Pauli blocking of the nucleon-nucleon collisions, the geometry, and the excitation energy. Studying a second set of time-dependent variables (radii, densities,...), we investigate in details how those correlations survive the reaction especially in central reactions where the nucleons have to pass through the whole system. It appears that some fragments are made of nucleons which were initially correlated, whereas others are formed by nucleons scattered during the reaction into the vicinity of a group of previously correlated nucleons.Comment: 45 pages text + 20 postscript figures Accepted for publication in Physical Review

    Classes of Multiple Decision Functions Strongly Controlling FWER and FDR

    Full text link
    This paper provides two general classes of multiple decision functions where each member of the first class strongly controls the family-wise error rate (FWER), while each member of the second class strongly controls the false discovery rate (FDR). These classes offer the possibility that an optimal multiple decision function with respect to a pre-specified criterion, such as the missed discovery rate (MDR), could be found within these classes. Such multiple decision functions can be utilized in multiple testing, specifically, but not limited to, the analysis of high-dimensional microarray data sets.Comment: 19 page

    Radial Flow in Au+Au Collisions at E=0.25-1.15 A GeV

    Get PDF
    A systematic study of energy spectra for light particles emitted at midrapidity from Au+Au collisions at E=0.25-1.15 A GeV reveals a significant non-thermal component consistent with a collective radial flow. This component is evaluated as a function of bombarding energy and event centrality. Comparisons to Quantum Molecular Dynamics (QMD) and Boltzmann-Uehling-Uhlenbeck (BUU) models are made for different equations of state.Comment: 10 pages of text and 4 figures (all ps files in a uuencoded package)

    Determination of atomic scattering lengths from measurements of molecular binding energies near Feshbach resonances

    Full text link
    We present an analytic model to calculate the atomic scattering length near a Feshbach resonance from data on the molecular binding energy. Our approach considers finite-range square-well potentials and can be applied near broad, narrow, or even overlapping Feshbach resonances. We test our model on Cs2_2 Feshbach molecules. We measure the binding energy using magnetic-field modulation spectroscopy in a range where one broad and two narrow Feshbach resonances overlap. From the data we accurately determine the Cs atomic scattering length and the positions and widths of two particular resonances.Comment: 6 pages, 4 figure
    corecore